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Nitric oxide (NO) is suggested to play a role in mediating pulmonary injury. However, interspecies
differences appear to exist in the ability of alveolar macrophages (AM) to express the inducible
nitric oxide synthase (INOS) and to generate NO. The purpose of this study was to compare iINOS
expression and NO production by rat, hamster, monkey, and human AM using the identical
experimental conditions in vitro. As AM donors, CD rats, Syrian golden hamsters, cynomolgus
monkeys, and nonsmoking, healthy human volunteers were used. The AM were obtained by
bronchoalveolar lavage and stimulated in vitro with various concentrations and combinations of
lipopolysaccharide (LPS) and interferon-y (IFN-y). The oxidation product of NO, nitrite, was
measured in the AM supernatant by the Griess reaction. The expression of iNOS in AM was
detected using immunocytochemistry and immunoblotting. The expression of INOS mRNA was
assessed by reverse transcriptase—polymerase chain reaction (RT-PCR). Rat AM, stimulated with
either LPS or IFN-y, produced nitrite in a time- and dose-dependent manner. Combination of LPS
and IFN-y resulted in a significantly enhanced nitrite formation. However, none of the treatments
was able to induce hamster, monkey, or human AM to release measurable amounts of nitrite.
Whereas expression of iNOS protein was only detected in stimulated rat AM, expression of iINOS
mRNA was found in unstimulated and stimulated rat AM, slightly in stimulated hamster AM, but
not in monkey and human AM. In conclusion, our findings point to distinct regulatory
mechanisms of the NO pathway in AM from these four different species. — Environ Health
Perspect 105(Suppl 4):1297-1300 (1997)

Key words: nitric oxide, inducible nitric oxide synthase, alveolar macrophages, species
differences, rat, hamster, monkey, human

Introduction

Species differences in response to various
agents are well known in biomedical
research. If such differences are identified
and characterized at the cellular and molec-
ular level, they might help to improve the
knowledge of the pathomechanisms of cer-
tain diseases. For two of the rodent species
used in inhalation toxicology, rat and ham-
ster, such species differences have already

been reported concerning their pulmonary
reactions to inhalation of pure oxygen (1),
diesel soot (2), or mineral fibers (3). After
inhalation of pathogenic material, alveolar
macrophages (AM) constitute one of the
first lines of cellular defense. Interaction of
AM with particles or fibers might result in
the formation of reactive oxygen species,
such as superoxide anion, and reactive
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nitrogen species, such as nitric oxide (NO)
(4). The reaction of superoxide anion with
NO forms a potent oxidant, peroxynitrite,
which may contribute to inflammatory
tissue damage (5,6). The production of
NO and other reactive nitrogen intermedi-
ates is already well established for cytokine-
activated rat and mouse AM (7-10).
However, the presence of such a pathway in
monocytes/macrophages from a number of
species, including humans, is the subject of
great controversy (I1-16). Recently, we
reported that hamster AM, in contrast to
rat AM, lack the ability to express the
inducible nitric oxide synthase (iNOS)
protein and to release detectable amounts
of NO after lipopolysaccharide (LPS) and
cytokine stimulation in vitro (7). The
objective of the work presented here was to
extend these studies by comparing the
iNOS expression and NO formation
by AM from the two rodent species rat
and hamster and the two primate species
monkey and human using the identical
experimental conditions in vitro.

Methods
Alveolar Macrophage Donors

CD rats (Crl:CD(SN)BR; 250-350 g) and
Syrian golden hamsters (Lak:LVG(SYR)BR;
120-150 g) were obtained from Charles
River (Sulzfeld, Germany) and kept in a
conventional, nonbarrier rodent housing
unit. Water and standard rodent laboratory
diets (ssniff, Soest, Germany) were supplied
ad libitum. Cynomolgus monkeys were
born and raised at the institutional animal
holding facilities. The human samples were
obtained from nonsmoking male and female
volunteers, 20 to 30 years of age, with no
history of recent pulmonary disease.

Cell Isolation and Culture

AM were obtained by bronchoalveolar
lavage (BAL). Rats and hamsters were anes-
thetized by an ip injection of sodium pen-
tobarbital (rat, 30 mg/kg bw; hamster, 24
mg/kg bw). The lungs were mobilized and
lavaged in situ as described by Dérger et al.
(7). Fiberoptic bronchoscopy with BAL
was performed in monkeys under general
anesthesia with ketamine (15 mg/kg bw)
and xylazine (2 mg/kg bw) and in human
volunteers under local anesthesia as
decribed by Krombach et al. (17) and Behr
et al. (18). For each species studied, the
procedure of processing the BAL samples
was identical. The pooled samples were
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‘centrifuged at 300Xg for 10 min; the cell
pellet was washed twice, and resuspended
in RPMI 1640 (Seromed, Munich,
Germany) supplemented with L-glutamine,
gentamycin (0.16 mg/ml), and 10% heat-
inactivated fetal bovine serum (Gibco
BRL, Eggenstein, Germany). Total cell
counts were assessed with a standard hema-
cytometer (Coulter Electronics, Krefeld,
Germany). Air-dried cytocentrifuge smears
(500 rpm X 5 min) served to identify the
cellular populations after staining with
May-Griinwald-Giemsa. The preparations
contained about 97 to 100% AM, as char-
acterized by morphologic criteria. The cell
viability was determined by trypan blue
exclusion and was greater than 90% for rat,
hamster, and monkey AM, and greater
than 75% for human AM. Lavaged cells
were then plated to 96-well flat-bottomed
cell culture plates (Nunclon Delta, Roskilde,
Denmark) at a density of 0.2 106 cells/well
and cultured for 2 hr at 37°C and 5%
C0O,/95% air. The nonadherent cells were
removed with 37°C warm RPMI 1640
medium, and the adherent cells were cov-
ered with 200 pl of medium. The AM were
treated for 24 hr with either Escherichia
coli LPS (1, 10, 100, and 1000 ng/ml) or
interferon-y (IFN-y) (1, 10, and 100
U/ml). LPS was purchased from Sigma
Chemie (Taufkirchen, Germany), rat
specific IFN-y came from Innogenetics
(Ismaning, Germany), and human recombi-
nant IFN-y (for human, monkey, and ham-
ster cells) was from Boehringer Mannheim
(Mannheim, Germany).

Measurement of Nitric Oxide
Production

The NO concentration in AM supernatants
was determined by measuring the oxida-
tion product nitrite with the Griess reac-
tion using a microplate assay method as
described by Ding et al. (19). Nitrite con-
centrations were calculated from a standard
sodium nitrite curve.

The expression of iINOS protein in AM
was determined after stimulation with
either 100 ng/ml LPS or 10 ng/ml LPS
plus 100 U/ml IFN-v for 20 hr at 37°C.
Immunocytochemistry was performed as
described earlier (7) using a polyclonal rab-
bit antimouse iNOS antibody (Dianova,
Hamburg, Germany) that cross-reacts with
rat and human iNOS according to the
manufacturer’s instructions. Binding of the
antibody to hamster iNOS was verified by
immunohistochemistry of pancreatic tissue
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sections taken from animals 18 hr after bolus
injection of LPS (5 mg/kg bw, iv) (data not
shown). Binding of the antibody to monkey
iNOS has not been explored so far, yet the
degree of the homology among amino acid
sequences of iNOS between rodents and
humans is about 80 to 94% (20).

Immunoblotting

Immunoblotting was performed as described
previously (7). Briefly, AM were cultured
with 100 ng/ml LPS or 10 ng/ml LPS plus
100 U/ml IFN-y for 24 hr at 37°C. After
incubation and lysis of cells, cell extracts
were run on a sodium dodecyl sulfate
(SDS)—polyacrylamide gel and transferred
to a nitrocellulose membrane. After applica-
tion to the iNOS antibody, the membrane
was exposed to an alkaline phosphatase-con-
jugated goat antirabbit IgG and developed
with 5-bromo-4-chloro-3-indolylphosphate/
nitro blue tetrazolium (BCIP/NBT).

Reverse Transcriptase—Polymerase
Chain Reaction

Total RNA were extracted from AM after
incubation with 10 ng/ml LPS plus 100
U/ml IFN-y for 16 hr using reverse tran-
scriptase (RT). The cDNA was amplified
by polymerase chain reaction (PCR) with a
DNA thermal cycler (Perkin Elmer, Cetus
Corp., Norwalk, CT). The amplification
reaction was carried out as described earlier
(7). Oligonucleotide primers for iINOS were
CACAAGGCCACATCGGATTTC (sense)
and TGCATACCACTTCAACCCGAG

(antisense), which correspond to the
murine macrophage iNOS (21), and
AGTTTCTGGCAGCAACGG (sense)
and TTAAGTTCTGTGTGCCGGCAG
(antisense) (MWG-Biotech, Ebersberg,
Germany), which correspond to human
iNOS (22).

Results
Formation of Nitric Oxide

To induce NO formation by AM, we
incubated the cells with various concentra-
tions of LPS or IFN-y. Stimulation with
either LPS or IFN-Yy resulted in a dose-
dependent NO release by rat AM. In con-
trast, none of these stimuli was able to
induce a detectable NO release by hamster,
monkey, or human AM (Table 1). Next, we
investigated whether stimulation with LPS
plus IFN-y would either increase the NO
generation by rat AM or actually induce an
NO release by hamster, monkey, or human
AM. In this series of experiments, AM were
cultured with 1 ng/ml LPS and graded con-
centrations of IFN-y at the same time. As
shown in Table 2, simultaneous incubation
with LPS plus IFN-y resulted in a potenti-
ated NO production by rat AM, but had no
effect on either hamster or primate AM.

Expression of iNOS Protein

To analyze the expression of iNOS protein
by rodent and primate AM, we used
immunocytochemical and immunoblotting
methods. After immunocytochemical

Table 1. Nitrite formation (nmol/mg protein) by rat, hamster, monkey, and human alveolar macrophages upon

stimulation with LPS or IFN-y.

Rat Hamster Monkey Human

Stimulus n=6 n=3 n=3 n=3
None -4 - - -

1 ng/ml LPS 101.9+23.8° - - -
10 ng/ml LPS 2259+ 545 - - ND
100 ng/ml LPS 257.6£50.1 - - -
1000 ng/ml LPS 265.5+55.1 - - ND

1 U/ml IFN-y 150+ 15.0 - - ND
10 U/ml IFN-y 1247+ 68 - - ND
100 U/ml IFN-y 1952+ 358 - - -

ND, not determined. #Below detection limit of 0.5 nmol. #Values are means + SEM.

Table 2. Effect of IFN-y on LPS-induced nitrite formation (nmol/mg protein) by rat, hamster, monkey, and human

alveolar macrophages.

Rat Hamster Monkey Human
Stimulus n=6 n=3 n=3 n=3
1 ng/ml LPS 101.9+238¢2 -b - -
1 ng/ml LPS + 1 U/ml IFN-y 13721215 - - ND
1 ng/ml LPS + 10 U/ml IFN-y 181.7+£234 - - ND
1 ng/mi LPS + 100 U/ml IFN-y 2782+21.9 - - -

ND, not determined. #Values are means + SEM. #Below detection limit of 0.5 nmol.
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SPECIES DIFFERENCES IN iNOS EXPRESSION

Table 3. Expression of iNOS protein and mRNA in rat, hamster, monkey, and human alveolar macrophages.

Method Stimuli

Rat Hamster

Monkey Human

None

LPS

LPS + IFN-y
None

LPS

LPS + IFN-y
None

LPS + IFN-y

Immunocytochemistry

Immunoblotting

RT-PCR

PFFriF 3!

+ 1

staining with a polyclonal rabbit antimouse
iNOS antibody, the native protein was
labeled only in stimulated rat AM, but not
in hamster, monkey, or human AM (Table
3). Consistent with the immunocyto-
chemical data, the appearance of a band at
approximately 125 kD, corresponding to
the molecular weight of iNOS protein, was
noted only in stimulated rat AM. In con-
trast, no specific reactivity was found in
hamster, monkey, and human AM,
whether untreated or treated (Table 3).

Expression of iNOS mRNA

RT-PCR assay was used to detect iNOS
mRNA expression in rat, hamster, monkey,
and human AM. Using the mouse iNOS
primer, a PCR product of predicted size of
741 bp was found in unstimulated and
stimulated rat AM, and in stimulated ham-
ster AM. As reported earlier, INOS mRNA
appeared to be expressed at a lower level in
hamster AM compared to rat AM (7). In
contrast, INOS transcripts were not found
in monkey AM, using mouse or human
iNOS primers, nor in human AM.

Discussion

Among two of the rodent species often
used in inhalation toxicology, rat and ham-
ster, species differences concerning their
pulmonary reactions to inhalation of pure
oxygen, diesel soot, and mineral fibers have

already been reported (/-3). However, the
cellular and molecular mechanisms causing
such differences remain unclear. Recently,
we reported that hamster AM, in contrast
to rat AM, lack the ability to express iINOS
and to produce NO after stimulation with
LPS and/or IFN-y in vitro (7). NO and its
reactive metabolites may play a crucial role
in inflammation, tissue damage, mutagene-
sis, and carcinogenesis (23). The produc-
tion of NO and other reactive nitrogen
intermediates has already been well estab-
lished for cytokine-stimulated rat and
mouse macrophages (8-10), whereas the
presence and regulation of the NO path-
way in monocytes/macrophages from vari-
ous species, including humans, still
remains controversial (7,11-16,24-27).
Here, we focused our interest on compar-
ing iNOS expression and NO production
by AM from two rodent species, rat and
hamster, and two primate species, monkey
and human, under identical experimental
conditions i vitro.

Our data presented here confirm previ-
ous reports on the dose-dependent NO for-
mation by rat AM (9,10) and the lack of
NO generation by hamster AM upon incu-
bation with LPS and/or IFN-y (7). Now,
we have extended these findings by demon-
strating also that AM from two primate
species, cynomolgus monkey and human,
were not activated by LPS and/or IFN-y to

form detectable amounts of NO. In support
of this finding, several studies suggested that
primate monocytes/macrophages release no
NO, or only modest amounts, after incuba-
tion with LPS and/or certain cytokines
in vitro (11-14,24,25).

In addition, we have shown that both
iNOS mRNA and protein were expressed
in stimulated rat AM. These results agree
with those previously reported for rat AM
(7,10,26). INOS mRNA was barely tran-
scribed in activated hamster, but not in
monkey and human AM, and iNOS pro-
tein was not expressed by AM from either
species. Nevertheless, recent reports suggest
that human AM from patients with lung
inflammation occasionally express the
iNOS protein (26) and that AM from
patients with tuberculosis transcribe iINOS
mRNA (27). However, we had the oppor-
tunity to examine AM from a heavy smoker
with bronchial carcinoma and did not
detect any expression of iNOS protein or
iNOS mRNA (unpublished data).

The data reported here extend our
previous observations that monkey and
human AM, in contrast to rat AM, failed
to express iNOS and to generate NO upon
stimulation with LPS and/or IFN-y in
vitro. Thus, in their inability to express the
iNOS protein and to generate NO iz vitro,
hamster AM tend to resemble monkey and
human AM more than rat AM. These
results suggest marked discrepancies among
rodent species concerning the presence and
regulation of the high-output NO pathway
in' AM, whereas among primate species
such differences apparently do not exist. If
these in vitro data on interspecies differ-
ences in iNOS expression and NO produc-
tion are confirmed iz vivo, they might
improve our knowledge of the molecular
mechanisms causing the disparate pul-
monary responses of different species to
inhaled irritants or toxicants.
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